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The Cascade of Uncertainty
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displays

Components
- maneuver to 
avoid collision & 
counter detection 
– detect, track, 
localize & classify 
–w/ all earlier  
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Environmental Uncertainty

• Ocean undersampled in time and space at all scales
– Archival: Levitus, GDEM,  BLUG, MODAS

• Useful guidance if sampled adequately
• Need high priority on operationally significant regions
• Errors in models often not stated
• Predictions and in situ measurements often disagree or 

lead to unacceptable errors
• Scales in time and space important for sonar

– Temporal
– Spatial 

• Volume, surface & bottom coupled, importance varies
– Deep excess deep water (no bottom) vs
– Littoral w/ downward refraction (volume and bottom) vs
– Doppler based system (surface)

acoustics environmentτ τ<<
acoustics environmentversusλ λ 
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Environmental Uncertainty (cont’d)

• Characterizing uncertainty methods
– 2nd moments, EOF’s, sampled covariances

• Often poorly conditioned or low effective rank 
because of the finite number of samples 
(oceanographic snapshots problem)

– Probability density functions
• Usually 1st order, few 2nd and higher - complicated 
• Few multivariate => Gaussian or Poisson employed

– E.g. – no N multivariate lognormal or beta pdf’s
• Dynamical - EKF’s w/ updates => large # of states, 

sparse observations, linearization problems, Ricatti
eqn divergence

• Bayesian methods – curse of dimensionality
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Acoustic Uncertainty

• Wave equation linear wrt to solution, very nonlinear 
wrt to parameter dependence

• EOF’s of the environment & EOF’s of acoustics 
(ray/mode models) often not well matched, e.g.
– Depends upon which ray/modes exploited by sonar
– Bottom bounce vs mixed layer, bottom for RR, RSR paths  

• Temporal and spatial coherence scales
– Temporal => lower limit on bandwidth
– Source receiver motion dominates except for fixed/fixed 

systems
– Spatial => aberrations across array aperture limits before 

partitioning for spatial diversity
– Vertical and multipath coherence => limits on matched 

field and other spatial recombination of multipaths
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Acoustic Uncertainty (cont’d)

• Acoustic prediction w/ uncertainty
– Common assertion => the errors in acoustic predictions 

are limited by the lack of input data
– Response => data for this will never be available either 

because of survey limits or ocean dynamics
– Stochastics, or uncertainty, always will be with us=> the 

important issues are 
• Learn to incorporate it!
• Understand its consequences and/or risks! 
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Acoustic Uncertainty (cont’d)

• Methods for acoustic prediction
– Parabolic equation

• Good narrowband solution except with high relief
• Used in current TDA’s (tactical decision aids)

– SFMPL and PCIMAT
• Narrowband vs path identification
• Uncertainty not propagated (2nd moment formulation)

– Coupled modes and range dependent OASIS
• Range dependent extension of homogeneous codes
• Moments can be propagated easily (numerically)

– Computation limits at high frequency and long ranges
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Acoustic Uncertainty (cont’d)

• Noise and reverberation 
– Ultimately sets limits on sonar performance
– Passive systems

• Structure of the noise field – high clutter (large # of 
discrete interferers) difficult, but presents opportunity 
for highest gains 

• Models available (DANES, ANDES, HITS) – model 
uncertainties unknown

– Active systems
• Reverberation (mosty bottom) limits performance 
• Very difficult to characterize accurately

– Model limits – diffuse vs discrete
– Little statistical characterization beyond scattering 

strength for extended interaction regions
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Signal Processing Uncertainty

• Stochastic uncertainty
– Obtaining a sufficient # of observations to constrains 

adaptive beamforming versus environmental stationarity
• Number of resolution cells

– Modern arrays have very high resolution
– Product of frequency bins X beams overwhelms an 

operator while searching
• Important to be robust at low SNR’s and 

uncertainty vs high SNR resolution enhancements
– Modern threat is at MDL (minimum detectable level) and at 

short range
• Horizontal vs vertical gain uncertainties vs array 

design
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Signal Processing Uncertainty (cont’d)

• Normalizers (contrast enhancement for an operator) 
very nonlinear with uncertain performance

• Trackers (tracks of all detectable shipping) have 
very uncertain performance due to multipath, signal 
fading and clutter

• Automation and pattern recognition at MDL mostly 
ad hoc

• Noise and clutter rejection algorithms

• Sonar signal processor objectives are to 
provide reliable detections in spite of 
environmental uncertainties
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Operator Uncertainty

• Operator experience – uncertainty at the sonar 
display often difficult to quantify
– Prediction TDA’s often not used

• Complexity of use vs skills of operator (w/ training)
• Reliability track record

• CO’s concerns
– Trade off risks vs ship safety, counter detection, self 

defense, tactical advantage and mission objectives in 
terms of speed, depth, environment

– What are the consequences of using the predictions 
(environmental, acoustic and sonar) vs the risks

– Is a maneuver coupled to a very sensitive parameter? or
is                                    very largePerformance

Environmental Model
∂ 

∂  
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Summary
Capturing Uncertainty for Sonars

• Uncertainty propagates through the complete 
chain for sonar performance!
– Characterizing only one component not appropriate

• Currently, the S&T efforts are concentrated at one 
component of uncertainty, whereas we need:
– Closer coupling of oceanography, acoustics and sonar 

signal processing
– Awareness of needs of the end user

• Capturing uncertainty robustly and simply 
remains an unsolved and difficult problem!
– Crosses several communities, e.g. –dB budget, 

operational investment decisions, OPNAV projects
– Fundamental research needed on all aspects, it is not 

just the environment
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